home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Chip: 2001 Haziran
/
CHIP Haziran2001.iso
/
prog
/
haziran
/
19
/
setup.exe
/
data.z
/
gt64_lib.c
< prev
next >
Wrap
C/C++ Source or Header
|
2001-04-11
|
19KB
|
611 lines
////////////////////////////////////////////////////////////////
// File - GT64_LIB.C
//
// Library for 'WinDriver for Galileo GT64' API.
// The basic idea is to get a handle for the board
// with GT64_Open() and use it in the rest of the program
// when calling WD functions. Call GT64_Close() when done.
//
////////////////////////////////////////////////////////////////
#include "../../../include/windrvr.h"
#include "../../../include/windrvr_int_thread.h"
#include "gt64_lib.h"
#include <stdio.h>
// this string is set to an error message, if one occurs
CHAR GT64_ErrorString[1024];
// internal function used by GT64_Open()
BOOL GT64_DetectCardElements(GT64_HANDLE hGT);
DWORD GT64_CountCards (DWORD dwVendorID, DWORD dwDeviceID)
{
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
HANDLE hWD = INVALID_HANDLE_VALUE;
GT64_ErrorString[0] = '\0';
hWD = WD_Open();
// check if handle valid & version OK
if (hWD==INVALID_HANDLE_VALUE)
{
sprintf( GT64_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
return 0;
}
BZERO(ver);
WD_Version(hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( GT64_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
WD_Close (hWD);
return 0;
}
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hWD, &pciScan);
WD_Close (hWD);
if (pciScan.dwCards==0)
sprintf( GT64_ErrorString, "no cards found\n");
return pciScan.dwCards;
}
BOOL GT64_Open (GT64_HANDLE *phGT, GT64_VERSION gt64Ver, DWORD dwVendorID, DWORD dwDeviceID, DWORD nCardNum, DWORD dwOptions)
{
GT64_HANDLE hGT = (GT64_HANDLE) malloc (sizeof (GT64_STRUCT));
WD_VERSION ver;
WD_PCI_SCAN_CARDS pciScan;
WD_PCI_CARD_INFO pciCardInfo;
*phGT = NULL;
GT64_ErrorString[0] = '\0';
BZERO(*hGT);
hGT->hWD = WD_Open();
// check if handle valid & version OK
if (hGT->hWD==INVALID_HANDLE_VALUE)
{
sprintf( GT64_ErrorString, "Failed opening " WD_PROD_NAME " device\n");
goto Exit;
}
BZERO(ver);
WD_Version(hGT->hWD,&ver);
if (ver.dwVer<WD_VER)
{
sprintf( GT64_ErrorString, "Incorrect " WD_PROD_NAME " version\n");
goto Exit;
}
hGT->gt64Ver = gt64Ver;
BZERO(pciScan);
pciScan.searchId.dwVendorId = dwVendorID;
pciScan.searchId.dwDeviceId = dwDeviceID;
WD_PciScanCards (hGT->hWD, &pciScan);
if (pciScan.dwCards==0) // Found at least one card
{
sprintf( GT64_ErrorString, "Could not find PCI card\n");
goto Exit;
}
if (pciScan.dwCards<=nCardNum)
{
sprintf( GT64_ErrorString, "Card out of range of available cards\n");
goto Exit;
}
BZERO(pciCardInfo);
pciCardInfo.pciSlot = pciScan.cardSlot[nCardNum];
WD_PciGetCardInfo (hGT->hWD, &pciCardInfo);
hGT->pciSlot = pciCardInfo.pciSlot;
hGT->cardReg.Card = pciCardInfo.Card;
hGT->fUseInt = (dwOptions & GT64_OPEN_USE_INT) ? TRUE : FALSE;
if (!hGT->fUseInt)
{
DWORD i;
// Remove interrupt item if not needed
for (i=0; i<hGT->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hGT->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->item = ITEM_NONE;
}
}
else
{
DWORD i;
// make interrupt resource sharable
for (i=0; i<hGT->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hGT->cardReg.Card.Item[i];
if (pItem->item==ITEM_INTERRUPT)
pItem->fNotSharable = FALSE;
}
}
hGT->cardReg.fCheckLockOnly = FALSE;
WD_CardRegister (hGT->hWD, &hGT->cardReg);
if (hGT->cardReg.hCard==0)
{
sprintf ( GT64_ErrorString, "Failed locking device\n");
goto Exit;
}
if (!GT64_DetectCardElements(hGT))
{
sprintf ( GT64_ErrorString, "Card does not have all items expected for Galileo GT64\n");
goto Exit;
}
// Open finished OK
*phGT = hGT;
return TRUE;
Exit:
// Error durin Open
if (hGT->cardReg.hCard)
WD_CardUnregister(hGT->hWD, &hGT->cardReg);
if (hGT->hWD!=INVALID_HANDLE_VALUE)
WD_Close(hGT->hWD);
free (hGT);
return FALSE;
}
DWORD GT64_ReadPCIReg(GT64_HANDLE hGT, DWORD dwReg)
{
WD_PCI_CONFIG_DUMP pciCnf;
DWORD dwVal;
BZERO (pciCnf);
pciCnf.pciSlot = hGT->pciSlot;
pciCnf.pBuffer = &dwVal;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = TRUE;
WD_PciConfigDump(hGT->hWD,&pciCnf);
return dwVal;
}
void GT64_WritePCIReg(GT64_HANDLE hGT, DWORD dwReg, DWORD dwData)
{
WD_PCI_CONFIG_DUMP pciCnf;
BZERO (pciCnf);
pciCnf.pciSlot = hGT->pciSlot;
pciCnf.pBuffer = &dwData;
pciCnf.dwOffset = dwReg;
pciCnf.dwBytes = 4;
pciCnf.fIsRead = FALSE;
WD_PciConfigDump(hGT->hWD,&pciCnf);
}
BOOL GT64_DetectCardElements(GT64_HANDLE hGT)
{
DWORD i;
DWORD ad_sp;
BZERO(hGT->Int);
BZERO(hGT->addrDesc);
for (i=0; i<hGT->cardReg.Card.dwItems; i++)
{
WD_ITEMS *pItem = &hGT->cardReg.Card.Item[i];
switch (pItem->item)
{
case ITEM_MEMORY:
case ITEM_IO:
{
DWORD dwBytes;
DWORD dwAddr;
DWORD dwPhysAddr;
DWORD dwAddrDirect = 0;
BOOL fIsMemory;
if (pItem->item==ITEM_MEMORY)
{
dwBytes = pItem->I.Mem.dwBytes;
dwAddr = pItem->I.Mem.dwTransAddr;
dwAddrDirect = pItem->I.Mem.dwUserDirectAddr;
dwPhysAddr = pItem->I.Mem.dwPhysicalAddr;
fIsMemory = TRUE;
}
else
{
dwBytes = pItem->I.IO.dwBytes;
dwAddr = pItem->I.IO.dwAddr;
dwPhysAddr = dwAddr & 0xffff;
fIsMemory = FALSE;
}
for (ad_sp=GT64_ADDR_BAR0; ad_sp<=GT64_ADDR_BAR5; ad_sp++)
{
DWORD dwPCIAddr;
DWORD dwPCIReg;
if (hGT->addrDesc[ad_sp].dwAddr) continue;
else if (ad_sp<GT64_ADDR_BAR5)
dwPCIReg = PCI_BAR0 + 4*(ad_sp-GT64_ADDR_BAR0);
else dwPCIReg = PCI_ERBAR;
dwPCIAddr = GT64_ReadPCIReg(hGT, dwPCIReg);
if (dwPCIAddr & 1)
{
if (fIsMemory) continue;
dwPCIAddr &= ~0x3;
}
else
{
if (!fIsMemory) continue;
dwPCIAddr &= ~0xf;
}
if (dwPCIAddr==dwPhysAddr)
break;
}
if (ad_sp<=GT64_ADDR_BAR5)
{
DWORD j;
hGT->addrDesc[ad_sp].dwBytes = dwBytes;
hGT->addrDesc[ad_sp].dwAddr = dwAddr;
hGT->addrDesc[ad_sp].dwAddrDirect = dwAddrDirect;
hGT->addrDesc[ad_sp].fIsMemory = fIsMemory;
hGT->addrDesc[ad_sp].dwMask = 0;
for (j=1; j<hGT->addrDesc[ad_sp].dwBytes && j!=0x80000000; j *= 2)
{
hGT->addrDesc[ad_sp].dwMask =
(hGT->addrDesc[ad_sp].dwMask << 1) | 1;
}
}
}
break;
case ITEM_INTERRUPT:
if (hGT->Int.Int.hInterrupt) return FALSE;
hGT->Int.Int.hInterrupt = pItem->I.Int.hInterrupt;
break;
}
}
// check that all the items needed were found
// check if interrupt found
if (hGT->fUseInt && !hGT->Int.Int.hInterrupt)
{
return FALSE;
}
// check that the registers space was found
if (!GT64_IsAddrSpaceActive(hGT, GT64_ADDR_REG))
//|| hGT->addrDesc[GT64_ADDR_REG].dwBytes!=GT64_RANGE_REG)
return FALSE;
// check that address space 0 was found
if (!GT64_IsAddrSpaceActive(hGT, GT64_ADDR_BAR0)) return FALSE;
return TRUE;
}
void GT64_Close(GT64_HANDLE hGT)
{
// disable interrupts
if (GT64_IntIsEnabled(hGT))
GT64_IntDisable(hGT);
// unregister card
if (hGT->cardReg.hCard)
WD_CardUnregister(hGT->hWD, &hGT->cardReg);
// close WinDriver
WD_Close(hGT->hWD);
free (hGT);
}
BOOL GT64_IsAddrSpaceActive(GT64_HANDLE hGT, GT64_ADDR addrSpace)
{
return hGT->addrDesc[addrSpace].dwAddr!=0;
}
DWORD GT64_ReadReg (GT64_HANDLE hGT, DWORD dwReg)
{
return GT64_ReadDWord(hGT, GT64_ADDR_REG, dwReg);
}
void GT64_WriteReg (GT64_HANDLE hGT, DWORD dwReg, DWORD dwData)
{
GT64_WriteDWord(hGT, GT64_ADDR_REG, dwReg, dwData);
}
DWORD GT64_ReadDWord (GT64_HANDLE hGT, GT64_ADDR addrSpace, DWORD dwOffset)
{
if (hGT->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hGT->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
return *pDword;
}
else
{
DWORD dwAddr = hGT->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = RP_DWORD;
trans.dwPort = dwAddr;
WD_Transfer (hGT->hWD, &trans);
return trans.Data.Dword;
}
}
void GT64_WriteDWord (GT64_HANDLE hGT, GT64_ADDR addrSpace, DWORD dwOffset, DWORD data)
{
if (hGT->addrDesc[addrSpace].fIsMemory)
{
DWORD dwAddr = hGT->addrDesc[addrSpace].dwAddrDirect + dwOffset;
DWORD *pDword = (DWORD *) dwAddr;
*pDword = data;
}
else
{
DWORD dwAddr = hGT->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
trans.cmdTrans = WP_DWORD;
trans.dwPort = dwAddr;
trans.Data.Dword = data;
WD_Transfer (hGT->hWD, &trans);
}
}
void GT64_ReadWriteBlock (GT64_HANDLE hGT, DWORD dwOffset, PVOID buf,
DWORD dwBytes, BOOL fIsRead, GT64_ADDR addrSpace)
{
DWORD dwAddr = hGT->addrDesc[addrSpace].dwAddr + dwOffset;
WD_TRANSFER trans;
BZERO(trans);
if (hGT->addrDesc[addrSpace].fIsMemory)
{
if (fIsRead)
trans.cmdTrans = RM_SDWORD;
else
trans.cmdTrans = WM_SDWORD;
}
else
{
if (fIsRead)
trans.cmdTrans = RP_SDWORD;
else
trans.cmdTrans = WP_SDWORD;
}
trans.dwPort = dwAddr;
trans.fAutoinc = TRUE;
trans.dwBytes = dwBytes;
trans.dwOptions = 0;
trans.Data.pBuffer = buf;
WD_Transfer (hGT->hWD, &trans);
}
void GT64_ReadBlock (GT64_HANDLE hGT, DWORD dwOffset, PVOID buf,
DWORD dwBytes, GT64_ADDR addrSpace)
{
GT64_ReadWriteBlock (hGT, dwOffset, buf, dwBytes, TRUE, addrSpace);
}
void GT64_WriteBlock (GT64_HANDLE hGT, DWORD dwOffset, PVOID buf,
DWORD dwBytes, GT64_ADDR addrSpace)
{
GT64_ReadWriteBlock (hGT, dwOffset, buf, dwBytes, FALSE, addrSpace);
}
BOOL GT64_IntIsEnabled (GT64_HANDLE hGT)
{
if (!hGT->fUseInt) return FALSE;
if (!hGT->Int.hThread) return FALSE;
return TRUE;
}
VOID GT64_IntHandler (PVOID pData)
{
GT64_HANDLE hGT = (GT64_HANDLE) pData;
GT64_INT_RESULT intResult;
intResult.dwCounter = hGT->Int.Int.dwCounter;
intResult.dwLost = hGT->Int.Int.dwLost;
intResult.fStopped = hGT->Int.Int.fStopped;
intResult.dwStatusReg = hGT->Int.Trans[0].Data.Dword;
hGT->Int.funcIntHandler(hGT, &intResult);
}
BOOL GT64_IntEnable (GT64_HANDLE hGT, GT64_INT_HANDLER funcIntHandler)
{
DWORD dwAddr;
if (!hGT->fUseInt) return FALSE;
// check if interrupt is already enabled
if (hGT->Int.hThread) return FALSE;
BZERO(hGT->Int.Trans);
// One transfer commands is issued to CANCEL the source of the interrupt,
// otherwise, the PC will hang when an interrupt occurs!
dwAddr = hGT->addrDesc[GT64_ADDR_REG].dwAddr + GT64_INTERRUPT_ACKNOWLEDGE;
hGT->Int.Trans[0].cmdTrans = hGT->addrDesc[GT64_ADDR_REG].fIsMemory ? RM_DWORD : RP_DWORD;
hGT->Int.Trans[0].dwPort = dwAddr;
hGT->Int.Int.dwCmds = 1;
hGT->Int.Int.Cmd = hGT->Int.Trans;
hGT->Int.Int.dwOptions |= INTERRUPT_CMD_COPY;
// this calls WD_IntEnable() and creates an interrupt handler thread
hGT->Int.funcIntHandler = funcIntHandler;
if (!InterruptThreadEnable(&hGT->Int.hThread, hGT->hWD, &hGT->Int.Int, GT64_IntHandler, (PVOID) hGT))
return FALSE;
return TRUE;
}
void GT64_IntDisable (GT64_HANDLE hGT)
{
if (!hGT->fUseInt) return;
if (!hGT->Int.hThread) return;
// this calls WD_IntDisable()
InterruptThreadDisable(hGT->Int.hThread);
hGT->Int.hThread = NULL;
}
GT64_DMA_HANDLE GT64_DMAOpen (GT64_HANDLE hGT, DWORD dwLocalAddr, PVOID buf,
DWORD dwBytes, BOOL fIsRead, GT64_DAT_TRANS_LIM lim_mode, GT64_DMA_CHANNEL dmaChannel)
{
DWORD dwChannelShift = dmaChannel*GT64_DMA_CHANNEL_SHIFT;
BOOL fAutoinc = TRUE;
GT64_DMA_HANDLE hDma;
if (hGT->gt64Ver == GT64_VERSION_64111)
{
sprintf( GT64_ErrorString, "GT-64111 DMA transfer are not supported\n");
goto Exit;
}
hDma = malloc (sizeof(GT64_DMA_STRUCT));
if (hDma==NULL)
{
sprintf( GT64_ErrorString, "Failed allocating memory for dma handle!\n");
goto Exit;
}
BZERO (*hDma);
hDma->dmaChannel = dmaChannel;
hDma->dma.dwBytes = dwBytes;
hDma->dma.pUserAddr = buf;
hDma->dma.dwOptions = 0;
WD_DMALock (hGT->hWD, &hDma->dma);
if (!hDma->dma.hDma)
{
sprintf( GT64_ErrorString, "Failed locking the buffer!\n");
goto Exit;
}
hDma->dwDmaControl =
((!fAutoinc && fIsRead)? 0 : BIT3) // hold source address
| ((!fAutoinc && !fIsRead)? 0 : BIT5) // hold destension address
| lim_mode // burst size
| BIT11 // block transfer mode
| BIT12 // to initiate the DMA
| BIT21 | BIT23 | BIT25; // source, destension, and next record is in PCI_0 Memory space
if (hDma->dma.dwPages==1)
{
hDma->dwDmaControl |= BIT9; // do not use chain mode
//dma of one page ==> direct dma
GT64_WriteReg (hGT, GT64_CHANNEL_0_DMA_BYTE_COUNT + dwChannelShift, hDma->dma.Page[0].dwBytes);
if (fIsRead)
{
GT64_WriteReg (hGT, GT64_CHANNEL_0_DMA_SOURCE_ADDRESS + dwChannelShift, dwLocalAddr);
GT64_WriteReg (hGT, GT64_CHANNEL_0_DMA_DESTINATION_ADDRESS + dwChannelShift
, (DWORD) hDma->dma.Page[0].pPhysicalAddr);
}
else
{
GT64_WriteReg (hGT, GT64_CHANNEL_0_DMA_DESTINATION_ADDRESS + dwChannelShift, dwLocalAddr);
GT64_WriteReg (hGT, GT64_CHANNEL_0_DMA_SOURCE_ADDRESS + dwChannelShift
, (DWORD) hDma->dma.Page[0].pPhysicalAddr);
}
GT64_WriteReg (hGT, GT64_CHANNEL_0_NEXT_RECORD_POINTER + dwChannelShift, 0); //One block
}
else
{
DWORD dwPageNumber, dwMemoryCopied;
typedef struct {
DWORD dwByteCt;
DWORD dwSrcAdd;
DWORD dwDestAdd;
DWORD dwNextRecPtr;
} DMA_LIST;
DMA_LIST *pList;
//dma of more then one page ==> chain dma
hDma->dmaList.dwBytes = hDma->dma.dwPages * sizeof(DMA_LIST);
hDma->dmaList.pUserAddr = NULL;
hDma->dmaList.dwOptions = DMA_KERNEL_BUFFER_ALLOC;
WD_DMALock (hGT->hWD, &hDma->dmaList);
if (!hDma->dmaList.hDma)
{
sprintf (GT64_ErrorString, "Failed locking the chain buffer!\n");
goto Exit;
}
//setting chain of dma pages in the memory
dwMemoryCopied = 0;
pList = (DMA_LIST *) ((DWORD) hDma->dmaList.pUserAddr);
for (dwPageNumber=0; dwPageNumber<hDma->dma.dwPages; dwPageNumber++)
{
pList[dwPageNumber].dwByteCt = hDma->dma.Page[dwPageNumber].dwBytes;
if (fIsRead)
{
pList[dwPageNumber].dwSrcAdd = dwLocalAddr + (fAutoinc ? dwMemoryCopied : 0);
pList[dwPageNumber].dwDestAdd = (DWORD) hDma->dma.Page[dwPageNumber].pPhysicalAddr;
}
else
{
pList[dwPageNumber].dwDestAdd = dwLocalAddr + (fAutoinc ? dwMemoryCopied : 0);
pList[dwPageNumber].dwSrcAdd = (DWORD) hDma->dma.Page[dwPageNumber].pPhysicalAddr;
}
pList[dwPageNumber].dwNextRecPtr =
((DWORD) hDma->dmaList.Page[0].pPhysicalAddr + sizeof(DMA_LIST)*(dwPageNumber+1));
dwMemoryCopied += hDma->dma.Page[dwPageNumber].dwBytes;
}
pList[dwPageNumber - 1].dwNextRecPtr = 0 ; // mark end of chain
hDma->dwDmaControl |= BIT10 // interrupt only after finishing all pages
| BIT13; // fetching the first record
// adjusting the first record
GT64_WriteReg (hGT, GT64_CHANNEL_0_NEXT_RECORD_POINTER + dwChannelShift,
(DWORD)hDma->dmaList.Page[0].pPhysicalAddr);
}
return hDma;
Exit:
if (hDma!=NULL)
GT64_DMAClose(hGT,hDma);
return NULL;
}
void GT64_DMAClose (GT64_HANDLE hGT, GT64_DMA_HANDLE hDma)
{
if (hDma->dma.hDma)
WD_DMAUnlock(hGT->hWD, &hDma->dma);
if (hDma->dmaList.hDma)
WD_DMAUnlock(hGT->hWD, &hDma->dmaList);
free (hDma);
}
BOOL GT64_DMAIsDone (GT64_HANDLE hGT, GT64_DMA_HANDLE hDma)
{
return (GT64_ReadReg (hGT, GT64_CHANNEL_0_CONTROL + hDma->dmaChannel * GT64_DMA_CHANNEL_SHIFT) & BIT14)==BIT14;
}
void GT64_DMAStart (GT64_HANDLE hGT, GT64_DMA_HANDLE hDma, BOOL fBlocking)
{
GT64_WriteReg (hGT, GT64_CHANNEL_0_CONTROL + hDma->dmaChannel * GT64_DMA_CHANNEL_SHIFT, hDma->dwDmaControl);
//Busy wait for GT to finish transfer
if (fBlocking)
while (!GT64_DMAIsDone(hGT, hDma));
}
BOOL GT64_DMAReadWriteBlock (GT64_HANDLE hGT, GT64_ADDR addrSpace, DWORD dwLocalAddrOffset, PVOID buf,
DWORD dwBytes, BOOL fIsRead, GT64_DAT_TRANS_LIM lim_mode, GT64_DMA_CHANNEL dmaChannel)
{
DWORD dwLocalAddr = hGT->addrDesc[addrSpace].dwAddrDirect + dwLocalAddrOffset;
GT64_DMA_HANDLE hDma;
if (dwBytes==0)
return TRUE;
hDma = GT64_DMAOpen(hGT, dwLocalAddr, buf, dwBytes, fIsRead, lim_mode, dmaChannel);
if (!hDma)
return FALSE;
GT64_DMAStart (hGT, hDma, TRUE);
GT64_DMAClose(hGT, hDma);
return TRUE;
}